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Abstract
Predicting socioeconomic indicators within urban
regions is crucial for fostering inclusivity, re-
silience, and sustainability in cities and human
settlements. While pioneering studies have at-
tempted to leverage multi-modal data for socioe-
conomic prediction, jointly exploring their under-
lying semantics remains a significant challenge.
To address the gap, this paper introduces a Multi-
Semantic Contrastive Learning (MuseCL) frame-
work for fine-grained urban region profiling and
socioeconomic prediction. Within this framework,
we initiate the process by constructing contrastive
sample pairs for street view and remote sensing
images, capitalizing on the similarities in human
mobility and Point of Interest (POI) distribution
to derive semantic features from the visual modal-
ity. Additionally, we extract semantic insights from
POI texts embedded within these regions, employ-
ing a pre-trained text encoder. To merge the ac-
quired visual and textual features, we devise an
innovative cross-modality-based attentional fusion
module, which leverages a contrastive mechanism
for integration. Experimental results across multi-
ple cities and indicators consistently highlight the
superiority of MuseCL, demonstrating an average
improvement of 10% in R2 compared to various
competitive baseline models. The code of this
work is publicly available at https://github.com/
XixianYong/MuseCL.

1 Introduction
Urbanization is intricately connected to critical facets of the
United Nations Sustainable Development Goals (UNSDGs),
affecting energy, environment, economy, climate, etc. [Sachs
et al., 2022]. By 2020, over 55% of the global population
resided in urban areas, and this trend is projected to per-
sist and intensify in the forthcoming decades [Habitat, 2022].
Embracing urbanization yields numerous advantages, includ-
ing a thriving cultural milieu, enhanced job prospects, and im-
proved transportation networks, etc. However, it also begets
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Figure 1: Multi-modal data representing urban regions. Each region
is linked to its remote sensing and street view imagery, POI data,
and inter-region connections, encompassing factors like population
mobility, fostering comprehensive insights into the urban landscape.

a host of predicaments and hurdles, such as air pollution, traf-
fic congestion, and escalated energy consumption [Zheng et
al., 2014]. To address these challenges and achieve SDGs,
gaining a comprehensive understanding of the urbanization
phenomenon through fine-grained region profiling and accu-
rate socioeconomic indicators becomes crucial.

Traditional approaches have relied on community surveys
to gather statistics on metrics like population density and
household income, which is both resource-intensive and time-
consuming [Custodio et al., 2023]. With the maturation of
urban perception technology, diverse forms of data continue
to proliferate within cities, which paves the way for fresh op-
portunities in tracking urban sustainable development indica-
tors. As depicted in Figure 1, these datasets encompass point
of interest (POI) information, vehicle movement trajectories,
remote sensing data, street view imagery, and social media
insights, among others. The utilization of this diverse data
pool offers robust support for a myriad of downstream tasks.
For instance, social media data is instrumental in predict-
ing crime and unemployment rates [Antenucci et al., 2014;
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Aghababaei and Makrehchi, 2016], urban lifestyle mining
[Zhou et al., 2018], and significantly contributes to studies
on urban sustainability [Ilieva and McPhearson, 2018]. Tra-
jectory data reveals valuable insights into mobility patterns,
socioeconomic indicators, and health trends [Cohen et al.,
2016; Gao et al., 2017; Zhou et al., 2017; Zhou et al., 2023;
Wang et al., 2018b]. POI data aids in discovering new venues
to explore [Zhou et al., 2019], deducing regional functions
[Yuan et al., 2012], and controlling light pollution [Zhang et
al., 2024]. Recent research also delves into the potential of ur-
ban imagery, employing remotely sensed images for poverty
prediction, land cover classification [Jean et al., 2019; Hong
et al., 2020; Burke et al., 2021], and analyzing street view
images to estimate pedestrian volume [Chen et al., 2020].

However, utilizing unimodal urban data often yields sub-
optimal results, prompting a growing inclination towards the
integration of multi-modal data. For instance, the simulta-
neous utilization of streetscape and remote sensing imagery
has proven effective in predicting socioeconomic indicators
[Wang et al., 2018a; Li et al., 2022]. The combination of
urban imagery with POI data has demonstrated its utility in
enhancing region representation [Wang et al., 2020; Huang
et al., 2021; Liu et al., 2023]. Furthermore, researchers have
ventured into the realm of multi-view graphs, leveraging data
from diverse sources to comprehensively characterize regions
[Qu et al., 2017; Fu et al., 2019]. This shift to multi-modal
approaches holds great promise for advancing urban data
analysis and interpretation, and helps to better achieve sus-
tainable development goals. Recent efforts [Jean et al., 2019;
Wu et al., 2022; Liu et al., 2023] aim to derive latent embed-
dings for individual regions and employ them in conjunction
with regional characteristics to predict a range of socioeco-
nomic indicators, showcasing their notable versatility.

While prior studies have undertaken region profiling and
socioeconomic prediction, several challenges persist. Among
these, three primary ones emerge: (1) Rapid societal devel-
opment has reshaped information exchange among regions,
prompting a reassessment of the applicability of Tobler’s First
Law of Geography [Miller, 2004]. Consequently, a more pre-
cise method is warranted to assess region similarity. (2) Ur-
ban representation predominantly focuses on geography and
human activity, necessitating effective modal filtering to meet
region representation demands amidst the abundance of urban
data. (3) Achieving effective fusion of diverse modal data is
crucial yet complex in developing the final region represen-
tation, necessitating the advancement of robust multi-modal
fusion techniques.

To tackle these challenges, we present a Multi-Semantic
Contrastive Learning (MuseCL) framework. The primary
contributions of our work can be summarized as follows:

• We pioneer the joint representation of regions using both
street view and remote sensing imagery, concurrently in-
tegrating POI and mobility flow data to enrich the em-
bedding with multi-dimensional semantic information.

• We enhance the spatial contrastive learning process by
factoring in the similarity between regional POI and
population mobility, resulting in more effective con-
trastive learning outcomes.

• We devise a cross-modal fusion model that aligns im-
agery with textual representation outputs, seamlessly in-
tegrating textual semantics into imagery representations.

• We validate the effectiveness of our framework through
experiments on socioeconomic indicators in three ma-
jor metropolises. The results demonstrate the superior
performance of our model compared to various com-
petitive state-of-the-art baselines across multiple down-
stream prediction tasks.

2 Related Work
Urban Representation Learning. With the increasing
availability of urban data, representation learning in urban
areas has witnessed significant growth in recent years. Nu-
merous studies have capitalized on the proximity of similar
regions in the embedding space to address various down-
stream tasks, such as crime prediction [Wang and Li, 2017;
Zhang et al., 2021], land cover classification [Yao et al., 2018;
Luo et al., 2022], and socioeconomic feature prediction
[Wang et al., 2018a; Li et al., 2022], among others. In this
context, various strategies have emerged for urban region rep-
resentation. For instance, Feng et al. [2017] proposed a latent
representation model POI2Vec to jointly model the user pref-
erence and POI sequential transition influence for predicting
potential visitors for a given POI. Wang and Li [2017] intro-
duced a method incorporating temporal dynamics and multi-
hop transitions. Zhang et al. [2017] presented a novel cross-
modal representation learning method, CrossMap, which un-
covers urban dynamics with massive geo-tagged social me-
dia data. Yao et al. [2018] proposed a framework to learn
the vector representation of city zones by leveraging large-
scale taxi trajectories. In a similar vein, Fu et al. [2019]
explored multi-view spatial networks, considering geograph-
ical distance view and human mobility connectivity view for
POIs within each region. Additionally, Wang et al. [2020]
devised a multi-modal and multi-stage framework integrating
image and text data within the neighborhood. These diverse
approaches offer unique perspectives and valuable insights
for further research in the urban representation learning field.
Socioeconomic Indicators Prediction. Initially, re-
searchers primarily employed supervised and unsupervised
learning methods for predicting socioeconomic indicators.
For instance, Chakraborty et al. [2016] proposed a generative
model of real-world events to predict various socioeconomic
indicators based on extracted events. Qu et al. [2017]
introduced a multi-view representation learning approach
that fostered collaboration among different views to generate
robust representations, subsequently used for socioeconomic
indicator prediction. Similarly, He et al. [2018] unveiled
correlations between visual patterns in satellite images and
commercial hotspots. In recent years, self-supervised learn-
ing methods, especially contrastive learning, have gained
traction for socioeconomic indicator forecasting. Drawing
inspiration from Tobler’s First Law of Geography [Miller,
2004], Jean et al. [2019] employed distance to establish
neighborhood similarities in loss functions. Furthermore,
Xi et al. [2022] incorporated POI similarity into contrastive
learning to overcome distance-based limitations.
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Figure 2: The overall architecture of the proposed MuseCL.

3 Preliminaries & Problem Statement
An urban area typically comprises multiple regions denoted
as R = {r1, r2, · · · , rN}. These regions exhibit unique
geographic and demographic characteristics, often reflected
through various data sources within them. In our study, we
focus on analyzing specific attributes of regions ri ∈ R
(i = 1, 2, · · · , N ), investigating the following aspects:

• Remote Sensing Imagery RVi. Remote sensing im-
agery captures ground surface details, effectively reveal-
ing building distribution and thus providing valuable
support for region representation.

• Street View Imagery SVi = {si1, si2, · · · , si|SVi|}. It
offers valuable insights into the appearance of streets,
buildings, and their immediate surroundings. A region
often contains multiple street view images.

• POI Data Ti = {Ti1, Ti2, · · · , Ti|Ti|}. We textualize
each POI as a bag of words {t1, t2, · · · , tn}, where each
word is obtained from the POI’s categories, ratings, re-
views, and other relevant information.

• Population Mobility Mi = {min
i ,mout

i }. min
i and

mout
i refer to the number of people entering and exit-

ing the region ri over a period of time, respectively. It
can reflect the socio-demographic activity of a region.

Given a collection of urban remote sensing images RV ,
street view images SV , POI data T , and population mo-
bility data M, our primary objective is to derive a low-
dimensional representation ϵi ∈ Rd for each region ri ∈
R(i = 1, 2, · · · , N), where d signifies the dimension of the
representation vectors. By effectively encapsulating the di-
verse characteristics inherent in each region, our approach
aims to generate compact yet informative representations, de-
noted as E = {ϵ1, ϵ2, · · · , ϵN}, to enhance various down-
stream socioeconomic prediction tasks in urban settings.

4 Methodology

4.1 Framework Overview

Figure 2 illustrates our proposed framework for fine-grained
urban region profiling to predict socioeconomic indicators.
This multi-step contrastive learning model consists of three
key components: extracting semantic features from the vi-
sual modality, incorporating textual semantic information,
and performing downstream tasks.

To begin, we partition the visual semantic learning module
into remote sensing imagery representations based on POI
similarity and street view imagery representations based on
population flow similarity. Contrastive learning sample pairs
are curated to acquire imagery features with distinct focal
points. Subsequently, we take into account the POI text in-
formation associated with each region and leverage a pre-
trained encoder-based model to derive the text features for
every region. Then, employing a feature-level attentive fu-
sion module, we align the combined remote sensing and street
view features with the text representation vectors of each re-
gion, thereby imbuing the fused features with both visual
and textual semantic insights. Lastly, we evaluate the low-
dimensional representations of each region across a range of
downstream tasks critical for urban sustainable development.

4.2 Visual Semantic Extraction

Street view and remote sensing imagery often contain infor-
mation with different emphases. For example, street view
imagery can provide characteristics of the social environ-
ment and population activity, while remote sensing imagery
is more oriented towards geographic attributes and surface
features [Liu et al., 2023]. Therefore, we need to get the em-
bedding of both separately and combine them effectively.
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Figure 3: Urban visual representation through contrastive learning
based on POI and mobility similarities.

Constructing Contrastive Samples
Recently, Xi et al. [2022] highlighted the limitations of To-
bler’s First Law of Geography [Miller, 2004], noting that re-
lying solely on spatial distance to measure regional similarity
is flawed. To address this, we propose a refined approach by
constructing contrastive learning pairs for street and remote
sensing images based on population flow and POI similar-
ity, respectively. Street images are paired with mobility data
because they reflect human movement patterns, while remote
sensing images are paired with POI data because they capture
the built environment and land use.

Population flow within a region can be gauged by quan-
tifying the influx and efflux of individuals or vehicles over
a specified timeframe. If we conceptualize regions as nodes
and the movement of individuals or vehicles between regions
as edges, the mobility of each region can be captured by tal-
lying the entries and exits at each node. Assuming that the in-
flow of population to region ri during a given period is min

i ,
and the outflow is mout

i , the population mobility distance be-
tween regions ri and rj is computed by:

distPM
i,j =

√ ∑
d∈{in,out}

(
md

i −md
j

)2
(1)

Then, the similarity of population mobility between the two
regions can be quantified as:

λPM
i,j =

1

distPM
i,j

(2)

We can construct positive samples characterized by higher
similarity and negative samples characterized by lower sim-
ilarity for each street view imagery, based on the parameter
λPM
i,j . As for remote sensing imagery, assuming that K dif-

ferent POI types are considered, we employ the Euclidean
distance to quantify the POI distance between region ri and
rj as follows:

distPOI
i,j =

√√√√ K∑
k=1

(
POIki − POIkj

)2
(3)

Therefore, the POI similarity between region ri and rj is:

λPOI
i,j =

1

distPOI
i,j

(4)

POI / Mobility Triplet Loss
Using the acquired λPM

i,j and λPOI
i,j , we proceed to form sep-

arate pairs of contrastive learning samples for street view
and remote sensing imagery. For instance, focusing on street
view imagery, we establish each anchor image AncSVi along
with its corresponding positive sample PosSVi and nega-
tive sample NegSVi based on the population flow similarity
λPM
i,j . Subsequently, we train a convolutional neural net-

work (CNN) denoted as FSV to map the constructed con-
trastive learning samples CSV = [AncSVi , PosSVi , NegSVi ]
into a low-dimensional vector space: xSV

i = FSV(Anc
SV
i ),

ySVi = FSV(PosSVi ), and zSVi = FSV(NegSVi ). Similarly,
we derive representation vectors for remote sensing imagery
denoted as xRV

i , yRVi , and zRVi , corresponding to the con-
trastive learning samples CRV = [AncRVi , PosRVi , NegRVi ].

Loss Optimization
To ensure the minimization of the distance between the an-
chor image and the positive image, while maximizing the sep-
aration from the negative image in the representation space,
we employ Triplet Loss [Schroff et al., 2015] as the loss func-
tion. The primary objective of this loss function is to bring
features with similar labels into close proximity within the
representation space, while simultaneously pushing features
with dissimilar labels apart. For each pair of samples, we
anticipate the fulfillment of the following equations:

sim(xm
i , ymi ) + a ≤ sim(xm

i , zmi ),m ∈ {SV,RV} (5)

Loss(Cm) = [a+ sim(xm
i , ymi )− sim(xm

i , zmi )]+ (6)
where [·]+ is a rectifier function to keep the loss function
value non-negative, and sim(·) denotes the cosine similar-
ity. The value a is used to prevent the features of anchor
samples Ancmi , positive samples Posmi and negative sam-
ples Negmi from aggregating into a small space. The whole
training framework is shown in Figure 3.

4.3 Textual Semantic Incorporation
POIs hold significance as data points denoting specific land-
marks on a map, often signifying distinct geographic loca-
tions such as stores, restaurants, parks, and more in cities.
The textual descriptions associated with POIs can effectively
capture the geographic attributes of a region. For instance, a
clustering of coffee shops within a region could indicate a vi-
brant locale appealing to young residents, whereas an abun-
dance of parks and green spaces might suggest a neighbor-
hood conducive to family-oriented living.

POI Textual Semantic Extraction
In addition to the imagery features, the textual data associated
with POIs plays a crucial role in region profiling. To effec-
tively harness the descriptive potential of POI text for region
representation, we employ Gensim in conjunction with Skip-
Gram and Huffman Softmax models [Mikolov et al., 2013]
for training. The Skip-Gram model, a neural network-based



word vector approach, enables the learning of word vectors
by predicting the contextual information of a word. Concur-
rently, the Huffman Softmax model, which leverages Huff-
man trees, enhances the neural network’s output layer, refin-
ing the overall representation process.

Considering the complexity and ambiguity inherent in POI
comments, we adopt a two-phase approach to extract the tex-
tual semantics. In the training phase, we utilize all POI com-
ments and categories to train the model. However, as we
transition to the representation phase, our focus narrows to
utilizing solely the categorical information associated with
each POI within the target regions. Assuming that for re-
gion ri ∈ R, its POI data Ti = {Ti1, Ti2, · · · , Ti|Ti|} is the
category of each POI in the region, and the final mapping of
the trained model from words to vectors is W . Then the final
POI embedding result for each region is:

ePOI
i =

1

|Ti|

|Ti|∑
j=1

W (Tij), Tij ∈ Ti (7)

Attentive Fusion Module
We proceed to integrate the street view features eSVi , remote
sensing features eRVi , and POI features ePOI

i , creating a com-
prehensive final representation tailored for utilization in vari-
ous downstream tasks.

Firstly, with the inherent importance of both imagery fea-
tures eSVi and eRVi unknown, we propose the incorporation
of an attentive fusion module to derive weights for each of
these representations. Considering street view features eSVi
and remote sensing features eRVi from region ri, we introduce
learnable parameters c, M, and b to facilitate their fusion:

αm
i = cT · ReLU(M · emi + b),m ∈ {SV,RV} (8)

βm
i =

exp(αm
i )∑

m∈{SV,RV} exp(α
m
i )

(9)

eImage
i =

∑
m∈{SV,RV}

βm
i · emi (10)

where eImage
i is the final representation for region’s imagery

feature and βm
i (m ∈ {SV,RV}) are weight coefficients.

Next, in order to incorporate the textual semantic informa-
tion of POIs, we refer to InfoNCE loss [Oord et al., 2018] to
align the features of imagery eImage

i and POI texts ePOI
i :

Lossi = −log
exp(sim(eImage

i , ePOI
i ))∑n

j=1 exp(sim(eImage
i , ePOI

j ))
(11)

where n denotes the mini-batch size. By optimizing the afore-
mentioned loss function, we acquire the region imagery fea-
tures eImage

i and effectively integrate the semantic informa-
tion of POIs. Subsequently, these obtained representations
for each region can be harnessed to forecast various socioe-
conomic indicators.

5 Experiments
5.1 Experimental Setups
Datasets
We compile real-world datasets from three major cities: Bei-
jing (BJ), Shanghai (SH), and New York (NY). The city re-
gions are delineated by hexagonal divisions, with a radius of
1 km for Beijing and Shanghai, and 500 meters for New York
(New York is much smaller than Beijing and Shanghai). It
should be noted that our model is highly adaptable to vari-
ous division shapes and scales, including road networks and
Census Block Groups (CBGs).

For street view imagery, we employ the Baidu Maps API1

for Beijing and Shanghai, and the Google Maps API2 for New
York. High-resolution (3.6-meter) remote sensing images are
acquired through ArcGIS for all three cities. The POI data
for Beijing and Shanghai originates from Baidu Maps, while
New York’s data is sourced from OpenStreetMap3 (OSM).
Socioeconomic indicators, including population density from
WorldPop4, housing data from Lianjia5, and crime data from
NYC Open Data6, are also integrated.

Baseline Models
We compare our proposed model with various unimodal and
multi-modal region representation algorithms, including:

• Inception v3 proposed in [Szegedy et al., 2016]. It can
extract features using convolutional layers with different
kernel sizes, max pooling and batch normalization.

• Resnet-18 proposed in [He et al., 2016]. It uses resid-
ual blocks to solve the degeneracy problem of deep net-
works. We use the Resnet-18 pre-trained in ImageNet.

• Tile2vec proposed in [Jean et al., 2019]. It is an unsu-
pervised learning method that uses geographic distance
as a criterion for constructing contrastive samples.

• Urban2vec proposed in [Wang et al., 2020]. It uses both
street view images and POI data to characterize neigh-
borhood features.

• PG-SimCL proposed in [Xi et al., 2022]. It uses remote
sensing imagery for region representation based on the
similarity of geographic distances and POI distributions
to perform prediction tasks on socioeconomic indicators.

• Add-svrv and Fusion-svrv. They represent the summa-
tion or attentional fusion of SV and RV embedding.

• Concat. We simply concatenate the SV, RV and POI
representation results as a variant of our method.

Metrics and Implementation
We adopt rooted mean squared error (RMSE) and coef-
ficient of determination (R2) for evaluation. In our ex-
periments, we use Inception v3 as SV encoder’s backbone

1https://lbsyun.baidu.com/index.php?title=viewstatic
2https://developers.google.com/maps
3https://www.openstreetmap.org/
4https://hub.worldpop.org/
5https://m.lianjia.com/bj/ershoufang/index/
6https://opendata.cityofnewyork.us/data/



City Beijing

Methods
PD HD MC NP NC

R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓ R2 ↑ RMSE ↓
Inception v3 0.0023 1.4765 -0.0211 1.0325 0.0051 2.2586 0.0065 1.6991 -0.0077 2.5665
Resnet-18 0.0685 1.4266 -0.0235 1.0337 0.0344 2.2251 0.0356 1.6740 0.0263 2.5229
Tile2vec 0.1102 1.3944 -0.0071 1.0254 0.1104 2.1357 0.1137 1.6048 0.0951 2.4320

Urban2vec 0.4982 1.0471 0.5327 0.6985 0.5943 1.4422 0.7955 0.7708 0.7251 1.3406
PG-SimCL 0.1425 1.3688 0.1119 0.9630 0.1636 2.0708 0.1628 1.5597 0.1332 2.3804
Add-svrv 0.0995 1.4027 0.0984 0.9702 0.0906 2.1593 0.1290 1.5909 0.1402 2.3707

Fusion-svrv 0.1408 1.3701 0.1145 0.9615 0.1716 2.0609 0.1577 1.5645 0.1322 2.3817
Concat 0.4984 1.0469 0.5399 0.6931 0.5738 1.4783 0.7832 0.7937 0.7276 1.3345

Ours 0.5310 1.0123 0.5708 0.6694 0.6229 1.3906 0.9471 0.3921 0.8782 0.8921
Impr. 6.54% 3.30% 5.72% 3.42% 4.81% 3.58% 19.06% 49.13% 20.70% 33.15%

Table 1: Prediction results of different socioeconomic indicators for Beijing: Population Density (PD), Housing Density (HD), Mobility
Count (MC), Number of POIs (NP) and Number of Comments (NC). The best results are in bold and the second best results are underlined.
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Figure 4: Predicted values versus true values on five socioeconomic datasets in Beijing. The dotted line is 45 degrees. The blue dots represent
the regions of the validation set and the purple dots represent the regions of the test set with the respective R2 illustrated.

and Resnet-18 as RV encoder’s backbone with a final linear
layer projecting features into the 128-dimensional embedding
space. We set the batch size to 32, the learning rate to 5e−4,
and use Adam optimizer. Datasets are split into 60% train-
ing, 20% validation, and 20% test sets. All socioeconomic
indicators are converted into logarithmic scale.

5.2 Experimental Results
Socioeconomic Indicators Prediction
We utilize the embedding of each region as input and employ
a multi-layer perceptron (MLP) to predict the socioeconomic
indicators. Table 1 shows the prediction outcomes for Bei-
jing, demonstrating a significant R2 improvement of 4.81%
to 20.70% over the best baselines across the five datasets.

Specifically, the Inception v3 and Resnet-18 networks
pre-trained on ImageNet achieve average R2 scores of only
-0.0030 and 0.0283 across datasets, failing to adequately cap-
ture the relationships between regions. While Tile2vec and
PG-SimCL show some improvements over pre-trained mod-
els with an average R2 of 0.0845 and 0.1428, they both
fall short in providing a comprehensive representation solely
through remote sensing imagery. Then, Urban2vec, a multi-
modal approach, outperforms other unimodal models with an
average R2 of 0.6292 exhibiting enhanced prediction results
by incorporating street view images and POI data. A compar-
ison of Add-svrv and Fusion-svrv reveals that the use of at-
tentional fusion module is more effective than simple summa-

tion when visual semantic is utilized. Our MuseCL notably
excels in all Beijing datasets with an average R2 of 0.7100,
which is 13.67% higher than Concat, highlighting successful
multi-semantic integration across visual and textual modali-
ties. This also demonstrates the effectiveness of MuseCL in
representing regional attributes, leading to more precise pre-
dictions of socioeconomic indicators. Furthermore, Figure
4 shows the predicted value v.s. true value on socioeconomic
indicators for Beijing, indicating that our MuseCL framework
shows superior prediction effect on different indicators.

Model Adaptability to Other Cities
We expand our experimental scope to include other well-
developed cities, thereby testing the adaptability of our
model. Shanghai has 746 valid representation regions, while
New York has 517. In Shanghai, our experiments cover Pop-
ulation Density (PD), Housing Density (HD), and Number
of POIs (NP) indicators. For New York, we incorporate the
widely recognized Crime (CR) dataset. Consistency in com-
parisons is maintained by employing the same baseline mod-
els as before. The predictive outcomes are presented in Table
2. Notably, our model consistently outperforms across cities
with varying sizes and geographical characteristics. Com-
pared to the next-best baselines, we achieve an improvement
in R2 ranging from 3.77% to 19.61%. This robust perfor-
mance reaffirms the adaptability of our model in addressing
the demands of different city types and diverse datasets.



City Dataset Metrics Inception v3 Resnet-18 Tile2vec Urban2vec PG-SimCL Concat Ours Impr.

Shanghai

PD
R2 ↑ -0.0384 -0.2813 0.0016 0.3401 0.0261 0.3596 0.4301 19.61%

RMSE ↓ 1.2269 1.3629 1.2031 0.9780 1.1882 0.9635 0.9089 5.67%

HD
R2 ↑ -0.0962 -0.0889 0.0424 0.4061 -0.0245 0.3763 0.4330 6.62%

RMSE ↓ 1.0586 1.0551 0.9895 0.7792 1.0234 0.7985 0.7614 2.28%

NP
R2 ↑ -0.0069 -0.0540 0.0677 0.8726 0.0902 0.8191 0.9283 6.38%

RMSE ↓ 1.5706 1.6069 1.5113 0.5586 1.4930 0.6657 0.4191 24.97%

New York

PD
R2 ↑ -0.0063 -0.0042 0.0052 0.3551 0.2735 0.3436 0.4165 17.29%

RMSE ↓ 2.1691 2.1669 2.1568 1.7365 1.8431 1.7519 1.6517 4.88%

CR
R2 ↑ -0.0001 -0.0146 -0.0442 0.3183 0.1634 0.2979 0.3303 3.77%

RMSE ↓ 1.5713 1.5827 1.6056 1.2973 1.4371 1.3166 1.2858 0.89%

NP
R2 ↑ -0.0416 -0.0531 -0.0117 0.2397 0.2102 0.2395 0.2594 8.22%

RMSE ↓ 1.3963 1.4040 1.3761 1.1929 1.2159 1.1931 1.1774 1.30%

Table 2: Prediction results of different socioeconomic indicators for Shanghai and New York: Population Density (PD), Housing Density
(HD), Number of POIs (NP) and Crime (CR). The best results are in bold and the second best results are underlined.
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Figure 5: Visualization of the final representation space.

Visualization of Region Representations
To gain deeper insights into the embedding space, we ap-
ply principal components analysis (PCA) [Shlens, 2014] to
downscale the representation vectors. We then use the K-
means algorithm to classify the regions into three clusters and
depict their spatial distribution in Figure 5. This visualization
reveals that regions with different levels of development oc-
cupy distinct locations in the embedded space.

Specifically, the yellow regions are situated on the outskirts
of Beijing, indicating underdevelopment and low socioeco-
nomic attributes. Their remote sensing and street view im-
ages depict agricultural landscapes with sparse populations
and limited POIs. In addition, purple regions, which are mod-
erately developed, extend across urban and suburban areas,
revealing emerging villages in their imagery. These areas
maintain non-built spaces but exhibit higher population densi-
ties and POI counts compared to the yellow ones. Meanwhile,
green regions, in central urban zones, include Beijing’s com-
mercial hubs, showing a highly urbanized environment with
strong socioeconomic indicators.
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Figure 6: Results of ablation study in Beijing and New York.

Ablation Study
We conduct ablation experiments using three datasets each
from Beijing and New York City. The results, as depicted
in Figure 6, indicate that the absence of certain modalities
leads to a reduction in the final prediction R2 value. No-
tably, relying solely on POI, street view, or remote sensing
images yields suboptimal outcomes. When combining street
view and remote sensing images without POI information,
the performance still falls short of our model’s performance,
although it fares better than utilizing street view or remote
sensing images individually. This reinforces the notion that
various modalities contribute distinct insights for predicting
downstream tasks and urban region profiling.

6 Conclusion
This paper presents a novel Multi-Semantic Contrastive
Learning (MuseCL) framework that skillfully amalgamates
semantic insights from visual and textual information to
generate embeddings for urban regions. We showcase
our model’s superiority in socioeconomic indicators predic-
tion across diverse cities and through extended experiments.
While our focus is on statically depicting urban regions, it is
important to acknowledge their rapid evolution due to devel-
opment. Therefore, incorporating time into region represen-
tation presents an interesting path for future research.
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